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Abstract

Discovering robust low-rank data representations is important
in many real-world problems. Traditional robust principal
component analysis (RPCA) assumes that the observed data
are corrupted by some sparse noise (e.g., Laplacian noise)
and utilizes the `1-norm to separate out the noisy compo-
nent. Nevertheless, as well as simple Gaussian or Laplacian
noise, noise in real-world data is often more complex, and
thus the `1 and `2-norms are insufficient for noise charac-
terization. This paper presents a more flexible approach to
modeling complex noise by investigating their properties in
the frequency domain. Although elements of a noise matrix
are chaotic in the spatial domain, the absolute values of its
alternative coefficients in the frequency domain are constant
w.r.t. their variance. Based on this observation, a new robust
PCA algorithm is formulated by simultaneously discovering
the low-rank and noisy components. Extensive experiments
on synthetic data and video background subtraction demon-
strate that FRPCA is effective for handles complex noise.

Introduction
Natural data such as that derived from video, documents,
images, and social networks are often low rank. For exam-
ple, in a recommendation system, the similarities between
movies and between users result in a low rank rating ma-
trix (Babacan et al. 2012; Pan et al. 2010). In another exam-
ple, a video sequence can be compressed by a representation
of much smaller dimensionality than the number of its pix-
els because of the strong correlation between consecutive
video frames (Xin et al. 2015; Nie, Huang, and Ding 2012;
Zhao et al. 2014).

In machine learning and data mining (Wold, Esbensen,
and Geladi 1987), principal component analysis (PCA) is
one of the most popular techniques for exploring the low-
rank representation of data. Based on singular value decom-
position (SVD), PCA seeks the best low-rank approxima-
tion of the data matrix under the `2-norm, which is exclu-
sive to Gaussian noise and inapplicable to gross noise or
outliers (Zhao et al. 2014). Therefore, a number of meth-
ods have emerged to enhance PCA’s robustness over the
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last decade (Wright et al. 2009; Ding, He, and Carin 2011;
Babacan et al. 2012; Wang et al. 2012; Zhao et al. 2014).

The robust principal component analysis algorithm
(RPCA (Wright et al. 2009; Nie, Yuan, and Huang 2014)) is
a representative robust improvement of the traditional PCA.
Besides the low-rank component of the original data matrix,
RPCA additionally employs an `1-norm to distill a sparse
matrix that characterizes large error corruptions, especially
Laplacian noise. Since Laplacian noise is common in nat-
ural data, RPCA performs well in many real-world prob-
lems, e.g., video background subtraction (Xin et al. 2015;
Babacan et al. 2012), face modeling (Li et al. 2014; Zhao et
al. 2014), and subspace learning (Ding and Fu 2016).

However, the noise seen in practical applications can be
more complex than simple Laplacian or Gaussian noise and,
furthermore, there might be a mixture of different types of
noise with distinct distributions, e.g., a video sequence cor-
rupted by two kinds of Gaussian noise and one Laplacian
noise (Zhao et al. 2014). In these challenging cases, tradi-
tional PCA and RPCA are ineffective due to their limited
capacity to model complex noise.

Recently, efforts have been made to broaden the RPCA al-
gorithm to tackle complex noise (Zhao et al. 2014; Ding, He,
and Carin 2011; Babacan et al. 2012). However, these meth-
ods tend to be inefficient due to the introduction of more
hyper-parameters such as the number of noise distributions,
variations of noise and noise level, which largely increase
model complexity and redundancy.

Instead of trying to characterize each individual possi-
ble noise distribution, we aim to develop a more flexible
approach to simultaneously modeling different noise distri-
butions. Based on the observation that the frequency coef-
ficients of i.i.d. noise signals in the frequency domain are
constant values w.r.t. their variance regardless of the type
of noise, we propose a new robust PCA algorithm in the
frequency domain. The original data matrix can be trans-
formed into the frequency domain and then decomposed into
a low-rank component constrained by the trace norm and a
noise component that is encouraged to approach some pre-
estimated constants. The resulting objective function can be
efficiently optimized by the augmented Lagrange multiplier
technique. Experimental results demonstrate the power of
the proposed algorithm to handle complex noise.



Preliminaries
We first briefly introduce some related works on RPCA.
Consider the observed data y (e.g., an image patch, a video
frame, a speech signal) corrupted by some noise, i.e.,

y = x + n, (1)

where x is the desired clean data and n is an addi-
tive noise signal. Many methods have been developed to
recover x from y. Robust principal component analysis
(RPCA) (Wright et al. 2009), as a representative method,
decomposes the corrupted matrix Y ∈ Rm×n into two
parts: the desired matrix X ∈ Rm×n and the noise matrix
N ∈ Rm×n, where m and n are the sample dimensional-
ity and the number, respectively. The desired clean matrix
X is supposed to be low rank, while N is encouraged to be
sparse. The RPCA model can be mathematically described
as:

min
X,N
||X||∗ + λ||N||1 s.t. Y = X + N, (2)

where ||X||∗ is the nuclear norm (Candès and Recht 2009)
accumulating all singular values of X, || · ||1 denotes the
`1-norm, and λ is the weight to balance two norms. Fcn.2
expects the estimated noise matrix to be sparse, which im-
plies that the noise follows a Laplacian-like distribution. Al-
ternatively, the `2-norm (Zhao et al. 2014) can be adopted to
handle Gaussian noise:

min
X,N
||X||∗ + λ||N||22 s.t. Y = X + N. (3)

However, the noise hidden in real-world data is often more
complex and may be composited of multiple noise distribu-
tions, e.g., different Gaussian noise with distinct means and
variances.

A variety of algorithms have also been proposed to han-
dle noise. The generative denoising model (Gu et al. 2014;
Dong, Zhang, and Shi 2011) can be formulated as

X̂ = arg min ||X−Y||2F + λR(X), (4)

where R(·) denotes some prior knowledge of X such as
the low rank assumption (Gu et al. 2014; Dong, Shi, and Li
2013) or the sparse assumption (Dong, Zhang, and Shi 2011;
Mairal et al. 2009; Xu et al. 2015). In fact, the ||·||F in Fcn.4
is the Frobenius norm of a matrix, equivalent to the `2-norm
for vectors. By replacing X−Y with N, these methods act
as Gaussian denoisers and can only recover data corrupted
by Gaussian noise.

To recover the clean data X, some studies have investi-
gated the complex noise corruption problem. (Ding, He, and
Carin 2011; Babacan et al. 2012) introduced Bayesian ap-
proaches to RPCA, by assuming that the noise is a sparse
noise plus a dense noise, but this approach also lacks appli-
cability to more complex mixed noise. (Zhao et al. 2014)
explored a mixture of Gaussians (MoG)-RPCA approach,
which had the capability to fit more complex noise via so-
phisticated assumptions and regularizations. However, it es-
timates multiple distributions simultaneously by introducing
more parameters, making the model more complex.

RPCA in the Frequency Domain
As discussed above, conventional `1 or `2-norms are only ef-
fective for specific types of noise and cannot be perfectly ap-
plied to complex noise. More rigorous assumptions and for-
mulations can be made to address the underlying noise, but
more parameters are introduced as a result, and the model
becomes difficult to optimize. A more effective approach is
required to model complex noise.

The Discrete Cosine Transform
Generally, the energy of natural data in the frequency
domain is mainly concentrated in low-frequency posi-
tions (Lam and Goodman 2000; Wang et al. 2016). In
contrast, the energy of noise signals in the frequency do-
main is dispersed. Specifically, it is well known that the
high-frequency coefficients of noisy images are significantly
higher than those of natural images when converted into the
frequency domain using spatial-frequency transformations,
e.g., FFT (Cooley and Tukey 1965), DCT (Ahmed, Natara-
jan, and Rao 1974), or PCA (Wold, Esbensen, and Geladi
1987).

Since the low-rank property is widespread in visual data
and PCA, RPCA, and their variants are usually evaluated
over visual data, we consider the denoising of visual data as
an example to illustrate the proposed algorithm. Compared
to FFT whose coefficients are imaginary numbers, DCT uti-
lizes real numbers to express frequency coefficients and is an
approximate KL-transformation for images. Hence we first
convert each corrupted observation into the frequency do-
main using DCT. Considering that y ∈ Rm1×m2 is a 2D
image or a frame from a video sequence, its DCT frequency
representation is:
Cyj1,j2 = D(yi1,i2)

= sj1sj2

m1−1∑
i1=0

m2−1∑
i2=0

C(i1, i2, j1, j2)yi1,i2

= Sj1,j2 ∗ y,

(5)

where m1 and m2 are the height and width of each image,
respectively. m = m1 × m2 is the dimensionality of each
sample. ∗ is the image convolution, and Sj1,j2(i1, i2) =
sj1sj2C(i1, i2, j1, j2) with the same size of y is generated to
calculate the j1, j2-th DCT coefficient of y. Cy ∈ Rm1×m2

is the DCT coefficient matrix of y, and sj =
√

1/n if j = 0

and sj =
√

2/n, otherwise. C(·, ·, ·, ·) represents the cosine
basis function:

C(i1, i2, j1, j2) =

cos

(
π(2i1 + 1)j1

2m

)
cos

(
π(2i2 + 1)j2

2n

)
.

(6)

As for the corrupted matrix Y = [vec(y1), ..., vec(yn)],
in which each column is an observed sample, we calculate
its frequency coefficient matrix CY as

CY = SY = SX + SN = CX + CN, (7)
where CX and CY are the coefficient matrices of X and Y,
respectively, and

S = [vec(S1,1), ..., vec(Sm1,m2
)], (8)



and the inverse DCT can be formulated as Y = STCY =
STCX + STCN. Note that S is an orthogonal matrix, i.e.,
STS = I, where I ∈ Rm×m is an identity matrix, Cy =
Cx + Cn, and CY = CX + CN.

Complex Noise in the Frequency Domain
Accurately modeling each individual noise component in
complex noise is difficult (Zhao et al. 2014), even if the com-
plex noise is the mixture of two kinds of Gaussian noise.
In the spatial domain, different noise distributions will pro-
duce various shapes and values. In contrast, we observe that
noises following different distributions have similar charac-
teristics in the frequency domain.

All elements in the noise matrix N are supposed to fol-
low an independent and identical distribution. Corruptions
can happen at any location, e.g., a pedestrian or a light can
appear at any location in a video (Laplacian noise) or whis-
pers can happen in any part of audio data(Gaussian nose).
We consider a generative form of complex noise

N ∼
P∑
p=1

πpDp(µp, σ2
p), (9)

where P is the number of distributions and Dp denotes the
p-th distribution; for example, Gaussian distribution, Lapla-
cian distribution, Exponential distribution etc. µp and σ2

p are
the expectation and the variance of Dp, respectively, and πp
is the proportion of Dp in the noise signal.

It is common to fix the expectation of the noise to 0,
i.e., µ =

∑P
p=1 πpµp = 0. This is because adding a con-

stant to all elements of an arbitrary matrix does not influ-
ence its properties, and a small constant additive illumina-
tion change will not obviously change the visual quality.
Thus, the variance of the mixed noise can be estimated as
σ2 =

∑P
p=1 πpσ

2
p given independent noise components. We

omit the subscript and represent the expectation and variance
of the complex noise as µ and variance σ2.

After transfering the noise matrix N into the frequency
domain using an orthogonal transform, its alternative coeffi-
cients (AC) are irrelevant to its expectation but only relevant
to its variance. By exploiting the property of the DCT and
its corresponding transformation matrix S, we have the fol-
lowing theorem.

Theorem 1. Given an arbitrary matrix N ∈ Rm×n, assume
that all of its elements are i.i.d. with expectation µ and vari-
ance σ2, i.e., E [Ni,j ] = µ, D [Ni,j ] = σ2. The expectation
of any of its squared AC coefficients CN2

i,j , i = 2, ...,m, j =
1, ..., n, in the frequency domain via an orthogonal matrix S
is equal to σ2.

Proof. The DCT coefficient matrix of the given matrix N is
CN = SN, and its direct coefficients (DC) are in the first
row with CN1,j = 1

m

∑n
j=1 Ni,j , which is irrelevant to the

variance of N. Thus, the DC should not be considered in the
proposed approach.

For any AC CNi,j , CNi,j = SiN(:, j) (i > 1), where
N(:, j) is the j-th column of N and Si denotes the i-th row

of S in Fcn.8. We can calculate the expectation of its squared
value CN2

i,j as

E
[
CN2

i,j

]
=
(
E
[
CNi,j

])2
+D

[
CNi,j

]
= (SiE [N(:, j)])

2
+ SiD [N(:, j)] STi

= (Siµ)
2

+ SiΣSTi

= µTSTi Siµ+ SiΣSTi

=< STi Si, µµ
T > + < STi Si,Σ >,

(10)

where Σ is the covariance matrix of N(:, j). Since the expec-
tation of N(:, j) is only reflected by its DC, when we only
tackle ACs, the expectation of N(:, j) is equal to 0. Thus,
the expectation of CN2

i,j is:

E
[
CN2

i,j

]
= 0+ < STi Si,Σ >

= σ2 < STi Si, I >

= σ2||STi ||22 = σ2,

(11)

which means that the expectation of CN2
i,j is only relevant to

the variance of N. Thus, we have CN2
i,j = σ2 and |CNi,j | =

σ
√

2/π, i = 2, ...,m, j = 1, ..., n.

Remark: S in Theorem 1 is an orthogonal matrix, which
can take various forms such as those in PCA, FFT, or
some learned orthogonal transform. Additionally, examples
can be either one dimensional (audio, documents) or two-
dimensional (images, videos).

According to Theorem 1, we have obtained an insightful
observation for modeling noise signal N, namely that its ab-
solute ACs in the frequency domain should approach a con-
stant value w.r.t. the noise variance. Thus, we propose the
following model for estimating the desired clean data:

min
X,N
||X||∗ + λ|| |SN| − ξ||F

s.t. Y = X + N,
(12)

where SN converts the noise matrix N into the frequency
domain. ξ is a synthetic matrix with the same size of Y.
Elements in the first row of ξ are equal to 0, which discards
the DCs of N, and other elements are equal to σ

√
2/π.

Optimization
|| · ||∗ and || · ||F of Fcn.12 are calculated in the spatial and
frequency domains respectively, which is inconvenient for
minimization. Fortunately, the DCT is an orthogonal trans-
form whose transformation matrix S is a full-rank matrix,
i.e., rank(S) = m. The rank of CX in the frequency domain
is therefore equal to the rank of X in the spatial domain,
i.e., rank(CX) = rank(SX) = rank(X). Fcn.12 can then be
rewritten as:

min
CX,CN

||CX||∗ + λ|| |CN| − ξ||2F

s.t. CY = CX + CN.
(13)

Compared to the objective function of RPCA (Fcn.2), the
proposed Fcn.13 escapes the optimization burden of the `1-
norm by adopting an F-norm to constrain the frequency co-
efficients of the noise signal in the frequency domain. The



inexact augmented Lagrange multiplier (IALM (Lin, Chen,
and Ma 2010)) for solving RPCA can also be applied to
effectively optimize Fcn.13. As a result, RPCA complexity
and convergency analyses can be simply adapted to the pro-
posed algorithm.

By introducing the augmented Lagrange multiplier, the
loss function can be defined as:

L (CX, CN, E, γ) = ||CX||∗ + λ|| |CN| − ξ||2F+

< E, CY − CX − CN > +
γ

2
||CY − CX − CN||2F ,

(14)

where E is the Lagrange multiplier and γ is a weight pa-
rameter to balance the original objective function and the
equality constraint. Fcn.14 can be divided into two parts and
solved separately.

The loss function of the desired data CX is

L (CX, E, γ) =||CX||∗− < E, CX >

+
γ

2
||CY − CX − CN||2F ,

(15)

which can be simplified as

L (CX, E, γ) =
1

γ
||CX||∗ +

1

2
||CX − (CY − CN +

1

γ
E)||2F

=
1

γ
||CX||∗ +

1

2
||CX −W ||2F ,

(16)
where W = CY − CN + 1

γE. The above function is a tra-
ditional low-rank minimization problem that can be directly
solved using the soft-thresholding scheme (Cai, Candès, and
Shen 2010):

ĈX = USγ−1(Σ)V T , (17)

where γ−1 is the parameter for shrinking singular values,
and W = UΣV T is the singular value decomposition of
W . Σ is a diagonal matrix whose diagonal elements Σii are
singular values of W , and

Sγ−1(Σ)ii = max(Σii − γ−1, 0). (18)

On the other hand, the objective function w.r.t. the noisy
data CN is

L (CN, E, γ) =λ|| |CN| − ξ||2F− < E, CN > +
γ

2
||CY − CX − CN||2F ,

(19)

which can be simplified as

L (CN, E, γ) =
λ

γ
|| |CN| − ξ||2F+

1

2
||CN − (CY − CX +

1

γ
E)||2F .

(20)

Generally, the problem involving two F-norms can be
minimized directly, but the absolute value function | · | in
Fcn.20 makes the optimization extremely difficult. An alter-
native is to estimate signs in advance (Lee et al. 2006). Since
CN in Fcn.20 is supposed to be consistent with CY − CX +
1
γE, we define two auxiliary variables

Q = sign(P ) ◦ ξ, (21)

Algorithm 1 Frequency RPCA for data recovery.
Input: Observed data Y, weight parameter λ;

1: Convert Y into the frequency domain CY ← SY;
2: Initialization: E0 = CY/J(CY), γ0 > 0, ρ > 1, k = 0;
3: repeat
4: Update CX (Fcn.15):
5: (U,Σ, V ) = svd(CY − CkN + γ−1k Ek);
6: Ck+1

X ← USγ−1
k

(Σ)V T

7: Update CN (Fcn.19):
8: P ← CY − Ck+1

X + γ−1k Ek;
9: Q← sign(P ) ◦ ξ;

10: CN ← (2λQ+ γkP )/(2λ+ γk);
11: Ek+1 ← Ek + γk(CY − Ck+1

X − Ck+1
N );

12: γk+1 ← ργk, k ← k + 1;
13: until convergence
14: Convert CkX and CkN into the spatial domain:
15: X← STCkX, N← STCkN
Output: Estimated data X and N.

and
P = CY − CX +

1

γ
E, (22)

to reformulate Fcn.20 as:

L (CN, E, γ) =
λ

γ
||CN −Q||2F +

1

2
||CN − P ||2F , (23)

where ◦ is the element-wise product. When λ > 0 and γ >
0, it is obvious that the solution of Fcn.23 is

ĈN =
2λQ+ γP

2λ+ γ
. (24)

The variance of the noise matrix σ2 in ξ can be regarded
as a hyper parameter, or can be approximately estimated
from the corrupted matrix Y. Since the highest frequency
coefficients of the desired clean matrix X are almost zeros,
the corresponding coefficients of the corrupted data Y are
mainly dominated by the noise. According to Theorem 1,
we can estimate σ as

σ
√

2/π ≈ 1

n

n∑
i=1

|CYm,i|. (25)

Finally, the multipliers are updated in Fcn.26, where ρ >
1 is a constant.

E = E + γ(CY − CX − CN), γ = ργ. (26)

By solving ĈX and ĈN iteratively, we can optimize Fcn.12
and obtain the desired data and noisy data simultaneously.
Alg. 1 summarizes the proposed approach, wherein, param-
eter settings and the initialization method refer to those in
IALM (Lin, Chen, and Ma 2010).

Experiments
We next evaluated the performance of the proposed method
and compared it with the state-of-the-art methods on syn-
thetic data and real video data. RPCA (Wright et al. 2009),



Table 1: A comparison on the performance of FRPCA and other state-of-the-art methods.

Noise type RPCA VBRPCA RegL1ALM MoG-RPCA FRPCA TFRPCA

Sparse noise
PSNR(dB) 27.91 20.63 20.51 16.82 30.38 30.48

RRE 0.0553 0.1155 0.1290 0.2249 0.0515 0.0510
Time(s) 1120.29 476.53 192.91 769.29 707.27 728.56

Gaussian noise
PSNR(dB) 26.29 20.45 20.63 16.76 30.54 30.64

RRE 0.0708 0.1198 0.1276 0.2333 0.0506 0.0501
Time(s) 1027.78 780.86 209.16 955.73 740.82 743.62

Mixed Gaussian
PSNR(dB) 25.31 20.15 17.25 21.63 27.53 27.58

RRE 0.0806 0.1263 0.2026 0.1239 0.0730 0.0727
Time(s) 910.16 858.22 140.30 1158.12 685.78 652.97

Mixed complex
PSNR(dB) 24.67 19.88 17.40 21.65 26.67 26.72

RRE 0.0872 0.1315 0.2032 0.1259 0.0792 0.0786
Time(s) 909.30 901.84 133.36 951.52 416.84 400.92

VBRPCA (Babacan et al. 2012), PRMF (Wang et al. 2012),
RegL1ALM (Zheng et al. 2012), and MoG-RPCA (Zhao et
al. 2014) were used as comparison methods. Codes for these
methods were obtained from their corresponding authors’
webpages. The proposed FRPCA only has one hyper pa-
rameter λ, which was empirically set as 10×m−1/2 for the
synthetic data and m−1/2 for the video data, where m is the
dimensionality of each sample.

Synthetic Data Simulation

Dataset generation. Several synthetic datasets were first
generated to evaluate FRPCAs performance. Five famous
and commonly used pictures were selected as examples:
Peppers, Lena, Butterfly, Baboon, and Cameraman. These
pictures were pre-processed to 128 × 128 pixels and
grayscale images, as shown in Figure 1. Then, 400 109×109
images were cropped from each picture and copied 4 times,
i.e., each picture was converted into a X ∈ R11881×1600 ma-
trix. Since there is strong conjunct information between sev-
eral neighboring image areas, X has an intrinsic low-rank
structure.

Figure 1: The test images.

Noise generation. We further synthetically added certain
types of noise to the generated ground truth matrices: 1)
sparse noise: 20% of elements were corrupted by uniform
noise within [−0.2, 0.2]; 2) Gaussian noise: all elements
were corrupted by Gaussian noise with µ = 0 and σ = 0.05;
3) mixed Gaussian noise: 40% of elements were corrupted
by Gaussian noise with µ = 0 and σ = 0.1 and the others
by Gaussian noise with µ = 0 and σ = 0.05; and 4) mixed
complex noise: the ground truth data were corrupted by the
sparse noise and then corrupted by the mixed Gaussian noise
as above.

We use the peak signal-to-noise ratios (PSNR) and the
relative reconstruction error (RRE) for performance assess-
ment. PSNR is a standard criterion for evaluating recov-
ery, and RRE directly calculates the accumulated data error,

which is calculated as:

RRE =
||X̂−X||F
||X||F

, (27)

where X is the ground truth matrix, X̂ is the estimated ma-
trix, and a smaller RRE means better performance. More-
over, we also tested the performance of replacing the tra-
ditional nuclear norm with the truncated nuclear norm, i.e.,
||X||∗,r =

∑min(m,n)
i=r+1 σi(X), where σi(X) denotes the i-th

maximum singular value of X. The truncated nuclear norm
accumulates the sum of min(m,n) − r minimum singular
values, which effectively preserves the main structure of the
input data. We set r = 10 and denote the modified FRPCA
as TFRPCA. Here, RPCA is implemented by the IALM.
Additionally, some of the comparison methods (VBPCA,
RegL1ALM, and Mog-RPCA) must estimate the rank of the
desired matrix X for satisfactory initialization, and each has
more than two hyper-parameters. We set rank(X) = 40 for
these methods, and tuned their parameters to make results
comparable. Except for the original RPCA, the other meth-
ods are sensitive to initialization and parameter settings.

Detailed results are presented in Table 1. Results were cal-
culated by averaging PSNR and RRE values over five pic-
tures, and the highest evaluation result in each case is high-
lighted in bold. Traditional RPCA still shows the best per-
formance of the four compared methods. Mog-RPCA was
designed to fit multiple noise distributions simultaneously,
thus its performance on mixed complex noise is better than
that on simple sparse noise and Gaussian noise. Overall, it
can clearly be seen that the performance of the proposed
FRPCA is superior to that of the original RPCA in the spa-
tial domain, whether assessed by PSNR or RRE. The PSNR
of FRPCA is about 2dB higher than those of RPCA for ev-
ery noise type. TFRPCA obtains the highest accuracy of all
the methods by embedding the truncated nuclear norm. It is
worth noting that when we set r = 20, the performance of
TFRPCA deteriorates since larger singular values can also
be corrupted when the noise level is relatively high.

We also report the MATLAB running times for each al-
gorithm. Although RegL1RPCA is fastest, its accuracy is
poor. FRPCA and TFRPCA are clearly more efficient than
the original RPCA and Mog-RPCA, since the processing of
complex noise in the frequency domain is better at removing



Figure 2: Results of video background subtraction using the proposed FRPCA and other state-of-the-art methods.

complex noise.
Additionally, we performed a qualitative comparison of

the different recovery approaches. The images estimated by
FRPCA are much more visually pleasing than those pro-
duced by the other methods. Detailed results can be found
in the supplementary materials.

Video Background Subtraction
Video background subtraction is one successful application
of RPCA in which a static camera captures a video sequence
and a clean background is the output. Generally, RPCA as-
sumes that the backgrounds of a given video can construct
a low-rank matrix and thus burst pixels can be regarded
as sparse noise such as a pedestrian, a dog, or a light. Al-
though RPCA can effectively divide the input video into
backgrounds and noisy images, some abnormal pixels are
not separated. Thus, we further apply the proposed FRPCA
to this task to illustrate the superiority of the proposed ap-
proach.

Four commonly utilized video sequences were selected
for this experiment: Bootstrap, Hall, Fountain, and Cam-
pus (Li et al. 2004), containing 3055, 3584, 523, and 1439
frames, respectively. Bootstrap and Hall are indoor scenes,
Fountain and Campus are outdoor scenes. We extracted 400
frames from Fountain and 600 frames from the other obser-
vations and then conducted background subtraction exper-
iments individually. All the comparison methods described
above were implemented, and the results are shown in Fig-
ure 2.

The background estimated by FRPCA is much clearer and
visually pleasing than those produced by the other methods;

only FRPCA removes all the people in the Bootstrap video.
Moreover, although each of these methods extracts a rela-
tively clean background, the proposed FRPCA can remove
various types of noise simultaneously, e.g., a moving bus,
pedestrians, and the background illumination. Additionally,
TFRPCAs performance with r = 10 is inferior to that of
FRPCA because the largest singular values can also be cor-
rupted by real-world complex noise.

Conclusions
Here we examine the data recovery problem with complex
noise with complex distribution and structure. Instead of in-
dependently characterizing each individual possible noise
distribution, we investigate the properties of complex noise
in the frequency domain. We find that the squared values of
all AC components of a noise matrix are similar, based on
which a new robust PCA in the frequency domain is de-
veloped. The complexity of the proposed model will not
be significantly influenced by the complexity of the noise,
and IALM optimization technique can be applied for ef-
ficient solution. Experiments on synthetic data and video
background subtraction show that the proposed method can
perform good recovery even when the noise is extremely
complex. The proposed FRPCA shows obvious advantages
over state-of-the-art approaches in terms of recovery accu-
racy and time cost.
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